On weakly $mathfrak{F}_{s}$-quasinormal subgroups of finite groups
Authors
Abstract:
Let $mathfrak{F}$ be a formation and $G$ a finite group. A subgroup $H$ of $G$ is said to be weakly $mathfrak{F}_{s}$-quasinormal in $G$ if $G$ has an $S$-quasinormal subgroup $T$ such that $HT$ is $S$-quasinormal in $G$ and $(Hcap T)H_{G}/H_{G}leq Z_{mathfrak{F}}(G/H_{G})$, where $Z_{mathfrak{F}}(G/H_{G})$ denotes the $mathfrak{F}$-hypercenter of $G/H_{G}$. In this paper, we study the structure of finite groups by using the concept of weakly $mathfrak{F}_{s}$-quasinormal subgroup.
similar resources
on weakly $mathfrak{f}_{s}$-quasinormal subgroups of finite groups
let $mathfrak{f}$ be a formation and $g$ a finite group. a subgroup $h$ of $g$ is said to be weakly $mathfrak{f}_{s}$-quasinormal in $g$ if $g$ has an $s$-quasinormal subgroup $t$ such that $ht$ is $s$-quasinormal in $g$ and $(hcap t)h_{g}/h_{g}leq z_{mathfrak{f}}(g/h_{g})$, where $z_{mathfrak{f}}(g/h_{g})$ denotes the $mathfrak{f}$-hypercenter of $g/h_{g}$. in this paper, we study the structur...
full textOn $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
full textOn Ss-quasinormal and Weakly S-permutable Subgroups of Finite Groups
A subgroup H of a group G is called ss-quasinormal in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; H is called weakly s-permutable in G if there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We fix in every non-cyclic Sylow subgr...
full textfinite groups whose minimal subgroups are weakly h*-subgroups
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
full texton weakly ss-quasinormal and hypercyclically embedded properties of finite groups
a subgroup $h$ is said to be $s$-permutable in a group $g$, if $hp=ph$ holds for every sylow subgroup $p$ of $g$. if there exists a subgroup $b$ of $g$ such that $hb=g$ and $h$ permutes with every sylow subgroup of $b$, then $h$ is said to be $ss$-quasinormal in $g$. in this paper, we say that $h$ is a weakly $ss$-quasinormal subgroup of $g$, if there is a normal subgroup ...
full textClassifying fuzzy normal subgroups of finite groups
In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.
full textMy Resources
Journal title
volume 41 issue 3
pages 665- 675
publication date 2015-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023